EI、Scopus 收录
中文核心期刊

圆柱体并联入水过程空泡演化特性实验研究

卢佳兴, 魏英杰, 王聪, 路丽睿, 许昊

卢佳兴, 魏英杰, 王聪, 路丽睿, 许昊. 圆柱体并联入水过程空泡演化特性实验研究[J]. 力学学报, 2019, 51(2): 450-461. DOI: 10.6052/0459-1879-18-288
引用本文: 卢佳兴, 魏英杰, 王聪, 路丽睿, 许昊. 圆柱体并联入水过程空泡演化特性实验研究[J]. 力学学报, 2019, 51(2): 450-461. DOI: 10.6052/0459-1879-18-288
Jiaxing Lu, Yingjie Wei, Cong Wang, Lirui Lu, Hao Xu. EXPERIMENTAL STUDY ON CAVITY EVOLUTION CHARACTERISTICS IN THE WATER-ENTRY PROCESS OF PARALLEL CYLINDERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 450-461. DOI: 10.6052/0459-1879-18-288
Citation: Jiaxing Lu, Yingjie Wei, Cong Wang, Lirui Lu, Hao Xu. EXPERIMENTAL STUDY ON CAVITY EVOLUTION CHARACTERISTICS IN THE WATER-ENTRY PROCESS OF PARALLEL CYLINDERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 450-461. DOI: 10.6052/0459-1879-18-288
卢佳兴, 魏英杰, 王聪, 路丽睿, 许昊. 圆柱体并联入水过程空泡演化特性实验研究[J]. 力学学报, 2019, 51(2): 450-461. CSTR: 32045.14.0459-1879-18-288
引用本文: 卢佳兴, 魏英杰, 王聪, 路丽睿, 许昊. 圆柱体并联入水过程空泡演化特性实验研究[J]. 力学学报, 2019, 51(2): 450-461. CSTR: 32045.14.0459-1879-18-288
Jiaxing Lu, Yingjie Wei, Cong Wang, Lirui Lu, Hao Xu. EXPERIMENTAL STUDY ON CAVITY EVOLUTION CHARACTERISTICS IN THE WATER-ENTRY PROCESS OF PARALLEL CYLINDERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 450-461. CSTR: 32045.14.0459-1879-18-288
Citation: Jiaxing Lu, Yingjie Wei, Cong Wang, Lirui Lu, Hao Xu. EXPERIMENTAL STUDY ON CAVITY EVOLUTION CHARACTERISTICS IN THE WATER-ENTRY PROCESS OF PARALLEL CYLINDERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 450-461. CSTR: 32045.14.0459-1879-18-288

圆柱体并联入水过程空泡演化特性实验研究

基金项目: 国家自然科学基金资助项目(11672094)
详细信息
    作者简介:

    2) 魏英杰,教授,主要研究方向:水动力学. E-mail: weiyingjie@gmail.com

  • 中图分类号: TV131.2

EXPERIMENTAL STUDY ON CAVITY EVOLUTION CHARACTERISTICS IN THE WATER-ENTRY PROCESS OF PARALLEL CYLINDERS

  • 摘要: 运动体并联入水广泛存在于机载射弹灭雷、空投鱼雷饱和攻击等空对海作战方式中,具有极强的工程应用背景.为得到运动体并联入水过程中空泡演化特性,采用基于高速摄像技术的光学测量方法,对圆柱体入水过程开展实验研究.利用图像处理技术对采集的图像序列中的空泡轮廓进行识别提取,通过对比单圆柱体和双圆柱体在不同弗劳德数下的空泡轮廓分析圆柱体并联入水过程的空泡演化特性和弗劳德数对其的影响.实验结果表明:入水空泡整体呈现良好的镜面对称特征,而圆柱体内外侧空泡存在明显的非对称性,当入水时刻的弗劳德数较低时,空泡闭合方式为深闭合,闭合点随弗劳德数增大而后移,当弗劳德数达到临界值时,闭合方式过渡为表面闭合且表面闭合方式下闭合点随弗劳德数增大而前移.在弗劳德数的正激励和环境压力、喷溅回卷负激励作用下,水下不同深度截面上的空泡扩张和空泡中心向外侧偏移量的峰值和时长均随弗劳德数增大呈现先增大后减小趋势,由于不同深度处主导的激励作用不同,故峰值和时长发生转折的弗劳德数临界点不同.
    Abstract: Water-entry process of parallel moving bodies widely exists in air-to-sea combat modes,such as airborne projectile elimating mines and air-dropped torpedo saturation attack, which has a strong engineering application background. In order to study the cavity evolution characteristics in the water-entry process of parallel cylinders, experimental study on the water-entry process of parallel cylinders is carried out used optical measurement method based on high-speed photography technology. The countor of cavity are identified and extracted with image processing technology. And by comparing the cavity countor between single cylinder and double cylinders with different Froude number at the time of water entry (Fr0), the cavity evolution characteristics in the water-entry process of parallel cylinders and the effect of Fr0 are analyzed. The experimental results show that the whole cavity shows good mirror symmetry, while the inside and outside cavity of the cylinder has obvious asymmetry. When the Fr0 is low, the cavity closure mode is pinch off, and the closure point moves backward with the increase of Fr0. And when Fr0 reaches critical value, the closure mode transits to surface closure and the closure point moves forward with the increase of Fr0 insteadly. Under the positive impact of Fr0 and the negative impact of ambient pressure and splashing and rolling, the peak value and time length of cavity expansion and outward offset of cavity center at different depth increase first and then decrease with the increase of Fr0. Due to the different dominant impact at different depths, the critical points of Fr0 at which the peak and time trends change are different.
  • [1] Truscott TT, Techet AH . Water entry of spinning spheres. Journal of Fluid Mechanics, 2009,625(1):135-165
    [2] Truscott TT . Cvaity dynamics of water entry for spheres and ballistic projectiles. [PhD Thesis]. Massachusetts Institute of Technology, 2009
    [3] Liu D, He Q, Evans GM . Penetration behaviour of individual hydrophilic particle at a gas-liquid interface. Advanced Powder Technology, 2010,21(4):401-411
    [4] Peters IR, Gekle S, Lohse D , et al. Air flow in a collapsing cavity. Physics of Fluids, 2013,25:491-499
    [5] Mansoor MM, Marston JO, Vakarelski IU , et al. Water entry without surface seal: Extended cavity formation. Journal of Fluid Mechanics, 2014,743:295-326
    [6] Marston JO, Thoroddsen ST . Ejecta evolution during cone impact. Journal of Fluid Mechanics, 2014,752:410-438
    [7] May A, Woodhull JC . Drag coefficients of steel spheres enter water vertically. Journal of Applied Physics, 1948,19:1109-1121
    [8] May A . Effect of surface condition of a sphere on its water-entry cavity. Journal of Applied Physics, 1951,22(10):1219-1222
    [9] May A . Vertical entry of missiles into water. Journal of Applied Physics, 1952,23(12):1362-1372
    [10] May A . Review of water-entry theory and data. Journal of Hydronautics, 1970,4(4):140-142
    [11] May A . Water entry and the cavity-running behavior of missiles. Washington: AD A020429, 1975
    [12] May A, Hoover WR . A study of the water-entry cavity. No.NOLTR-63-264
    [13] Gekle SG, José M, Devaraj VDM , et al. High-speed jet formation after solid object impact. Physical Review Letters, 2009,102(3):034502
    [14] Wang JB . Numerical investigation for air cavity formation during the high speed water entry of wedges. Science Direct, 2010,22(5):829-833
    [15] Reinhard M, Korobkin AA, Cooker MJ . Cavity formation on the surface of a body entering water with deceleration. Journal of Engineering Mathematics, 2016,96(1):155-174
    [16] Iranmanesh A, Passandideh-Fard M . A three-dimensional numerical approach on water entry of a horizontal circular cylinder using the volume of fluid technique. Ocean Engineering, 2017,130:557-566
    [17] 何春涛, 王聪, 何乾坤 等. 圆柱体低速入水空泡试验研究. 物理学报, 2012,61(13):281-288
    [17] ( He Chuntao, Wang Cong, He Qiankun , et al. Low speed water-entry of cylinderical projectile. Acta Phys. Sin, 2012,61(13):281-288 (in Chinese))
    [18] 顾建农, 张志宏, 王冲 等. 旋转弹头水平入水空泡及弹道的实验研究. 兵工学报, 2012,33(5):540-544
    [18] ( Gu Jiannong, Zhang Zhihong, Wang Chong , et al. Experimental research for cavity and ballistics of a rotating bullet entraining water levelly. Acta Armamentarii, 2012,33(5):540-544 (in Chinese))
    [19] 路中磊, 魏英杰, 王聪 等. 基于高速摄像试验的开放腔体圆柱壳入水空泡流动研究. 物理学报, 2016,65(1):014704
    [19] ( Lu Zhonglei, Wei Yingjie, Wang Cong , et al. An experimental study of water-entry cavitating flows of an end-closed cylindrical shell based on the high-speed imaging technology. Acta Physica Sinica, 2016,65(1):014704 (in Chinese))
    [20] 路中磊, 魏英杰, 王聪 等. 开放空腔壳体入水扰动流场结构及空泡失稳特征. 物理学报, 2017,66(6):064702
    [20] ( Lu Zhonglei, Wei Yingjie, Wang Cong , et al. Experimental and numerical investigation on the flow structure and instability of water-entry cavity by a semi-closed cylinder. Acta Physica Sinica, 2017,66(6):064702 (in Chinese))
    [21] 路中磊, 魏英杰, 王聪 等. 开放空腔壳体入水流场结构及流体动力特征研究. 北京航空航天大学学报, 2016,42(11):2403
    [21] ( Lu Zhonglei, Wei Yingjie, Wang Cong , et al. Numerical study on flow structure and fluid dynamics of an end-closed cylinder shell vertical water-entry. Journal of Beijing University of Aeronautics and Astronautics, 2016,42(11):2403 (in Chinese))
    [22] 路中磊, 孙铁志, 魏英杰 等. 开放空腔壳体倾斜入水运动特性试验研究. 力学学报, 2018,50(2):263-273
    [22] ( Lu Zhonglei, Sun Tiezhi, Wei Yingjie , et al. Experimental investigation on the motion feature of inclined water-entry of a semi-closed cylinder. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(2):263-273 (in Chinese))
    [23] 王瑞琦, 黄振贵, 朱世权 等. 平头弹丸入水空泡闭合实验研究及数值模拟. 兵器装备工程学报, 2017(12):36-39
    [23] ( Wang Ruiqi, Huang Zhengui, Zhu Shiquan , et al. Experimental and numerical study of cavity closure of flat projectile entering water. Journal of Sichuan Ordnance, 2017(12):36-39 (in Chinese))
    [24] 张珂, 颜开, 褚学森 等. 基于LBM方法的圆盘等速入水空泡的数值模拟. 船舶力学, 2010,14(10):1129-1133
    [24] ( Zhang Ke, Yan Kai, Chu Xuesen , et al. Numerical simulation of constant speed water-entry cavity based on LBM. Journal of Ship Mechanics, 2010,14(10):1129-1133 (in Chinese))
    [25] 蒋运华, 徐胜利, 周杰 . 圆盘空化器航行体入水空泡实验研究. 工程力学, 2017,34(3):241-246
    [25] ( Jiang Yunhua, Xu Shengli, Zhou Jie . Water entry experiment of a cylindrical vehicle with disc. Engineering Mechanics, 2017,34(3):241-246 (in Chinese))
    [26] 施红辉, 周浩磊, 吴岩 等. 伴随超空泡产生的高速细长体入水实验研究. 力学学报, 2012,44(1):49-55
    [26] ( Shi Honghui, Zhou Haolei, Wu Yan , et al. Experiments on water entry of high-speed slender body and the resulting supercavitation. Chinese Journal of Theoretical and Applied Mechanics, 2012,44(1):49-55 (in Chinese))
    [27] 朱棒棒, 施红辉, 侯健 等. 高速射弹入水时空气携带量的数值模拟. 浙江理工大学学报, 2017,37(3):402-408
    [27] ( Zhu Bangbang, Shi Honghui, Hou Jian , et al. Numerical simulation of air entrainment amount during high-speed projectile into water. Journal of Zhejiang Sci-Tech University, 2017,37(3):402-408 (in Chinese))
    [28] 施红辉, 胡青青, 陈波 等. 钝体倾斜和垂直冲击入水时引起的超空泡流动特性实验研究. 爆炸与冲击, 2015,35(5):617-624
    [28] ( Shi Honghui, Hu Qingqing, Chen Bo , et al. Experimental study of supercavitating flows induced by oblique and vertical water entry of blunt bodies. Explosion and Shock Waves, 2015,35(5):617-624 (in Chinese))
    [29] 施红辉, 张晓萍, 吴岩 等. 细长体倾斜入水时的非平衡态超空泡气液两相流研究. 浙江理工大学学报(自然科学版), 2012,29(4):570-574
    [29] ( Shi Honghui, Zhang Xiaoping, Wu Yan , et al. The non-equilibrium gas-liquid two-phase flow and supercavitation phenomenon during water entry of a slender body. Journal of Zhejiang Sci-Tech University, 2012,29(4):570-574 (in Chinese))
    [30] 王云, 袁绪龙, 吕策 . 弹体高速入水弯曲弹道实验研究. 兵工学报, 2014,35(12):1998-2002
    [30] ( Wang Yun, Yuan Xulong, Lü Ce . Experimental research on curved trajectory of high-speed water-entry missile. Acta Armamentarii, 2014,35(12):1998-2002 (in Chinese))
    [31] 朱珠, 袁绪龙 . 柱体高速入水冲击载荷与空泡特性. 计算机仿真, 2014,31(3):29-33
    [31] ( Zhu Zhu, Yuan Xulong . High-speed water-entry impact and cavity characters of cylinder. Computer Simulation, 2014,31(3):29-33 (in Chinese))
    [32] 邱海强, 袁绪龙, 王亚东 等. 回转体高速垂直入水冲击载荷和空泡形态仿真. 鱼雷技术, 2013(3):161-164
    [32] ( Qiu Haiqiang, Yuan Xulong, Wang Yadong , et al. Simulation on impact load and cavity shape in high speed vertical water entry for an axisymmetric body. Torpedo Technology, 2013(3):161-164 (in Chinese))
    [33] 朱珠, 袁绪龙, 王亚东 . 推力对高速入水流场特性影响. 空军工程大学学报(自然科学版), 2014(1):10-14
    [33] ( Zhu Zhu, Yuan Xulong, Wang Yadong . The influence of the thrusting force on the characters of the high-speed flow field. Journal of Air Force Engineering University (Natural Science Edition), 2014(1):10-14 (in Chinese))
    [34] 何春涛 . 典型运动体入水过程多相流动特性研究. [博士论文]. 哈尔滨工业大学, 2012
    [34] ( He Chuntao . Study on multiphase flow of typical body during water entry. [PhD Thesis]. Harbin: Harbin Institute of Technology, 2012 (in Chinese))
  • 期刊类型引用(11)

    1. 韩可新,刘海晓,漆超,陈志宏,吕续舰. 基于CFD的并列超空泡射弹高速斜入水流体动力特性研究. 空气动力学学报. 2024(02): 96-110 . 百度学术
    2. 项珺邦,王晓光,康会峰,宣佳林,杨柳. 空心弹入水射流与空化特性仿真. 水下无人系统学报. 2024(03): 482-488 . 百度学术
    3. 李宜果,王聪,武雨嫣,曹伟,卢佳兴,何乾坤. 跨介质航行体高速入水空泡壁面运动特性. 兵工学报. 2022(03): 574-585 . 百度学术
    4. 严晨祎,陈瑛. 旋转圆球入水空泡特性与流场结构的大涡模拟研究. 力学学报. 2022(04): 1012-1025 . 本站查看
    5. 杨柳,孙铁志,魏英杰,王聪,李佳川,夏维学. 超弹性球体入水过程空泡演化及球体变形实验. 物理学报. 2021(08): 296-304 . 百度学术
    6. 程怀玉,季斌,龙新平,槐文信. 空化对叶顶间隙泄漏涡演变特性及特征参数影响的大涡模拟研究. 力学学报. 2021(05): 1268-1287 . 本站查看
    7. 王聪,何超杰,余德磊. 回转体并联入水运动状态预测. 哈尔滨工业大学学报. 2021(06): 21-26 . 百度学术
    8. 左子文,蒋鹏,王军锋,王林,霍元平. 亚毫米球体撞击液滴过程实验研究. 力学学报. 2021(10): 2745-2751 . 本站查看
    9. 余德磊,王聪,何超杰. 回转体并联入水过程空泡及运动特性数值模拟. 哈尔滨工业大学学报. 2021(12): 23-32 . 百度学术
    10. 王旭,吕续舰. 双球并联入水空化及运动特性实验研究. 振动与冲击. 2020(15): 221-229 . 百度学术
    11. 张鹤,魏英杰,王聪,路丽睿,樊继壮. 侧方扰动下圆柱体异步并列入水试验. 船舶工程. 2020(09): 142-148 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  1693
  • HTML全文浏览量:  278
  • PDF下载量:  200
  • 被引次数: 18
出版历程
  • 收稿日期:  2018-09-01
  • 刊出日期:  2019-03-17

目录

    /

    返回文章
    返回