EI、Scopus 收录
中文核心期刊

滴状模式下液桥形成及断裂的电流体动力学特性研究

霍元平, 王军锋, 左子文, 刘海龙

霍元平, 王军锋, 左子文, 刘海龙. 滴状模式下液桥形成及断裂的电流体动力学特性研究[J]. 力学学报, 2019, 51(2): 425-431. DOI: 10.6052/0459-1879-18-256
引用本文: 霍元平, 王军锋, 左子文, 刘海龙. 滴状模式下液桥形成及断裂的电流体动力学特性研究[J]. 力学学报, 2019, 51(2): 425-431. DOI: 10.6052/0459-1879-18-256
Yuanping Huo, Junfeng Wang, Ziwen Zuo, Hailong Liu. ELECTROHYDRODYNAMIC CHARACTERISTICS OF LIQUID BRIDGE FORMATION AT THE DRIPPING MODE OF ELECTROSPRAYS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 425-431. DOI: 10.6052/0459-1879-18-256
Citation: Yuanping Huo, Junfeng Wang, Ziwen Zuo, Hailong Liu. ELECTROHYDRODYNAMIC CHARACTERISTICS OF LIQUID BRIDGE FORMATION AT THE DRIPPING MODE OF ELECTROSPRAYS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 425-431. DOI: 10.6052/0459-1879-18-256
霍元平, 王军锋, 左子文, 刘海龙. 滴状模式下液桥形成及断裂的电流体动力学特性研究[J]. 力学学报, 2019, 51(2): 425-431. CSTR: 32045.14.0459-1879-18-256
引用本文: 霍元平, 王军锋, 左子文, 刘海龙. 滴状模式下液桥形成及断裂的电流体动力学特性研究[J]. 力学学报, 2019, 51(2): 425-431. CSTR: 32045.14.0459-1879-18-256
Yuanping Huo, Junfeng Wang, Ziwen Zuo, Hailong Liu. ELECTROHYDRODYNAMIC CHARACTERISTICS OF LIQUID BRIDGE FORMATION AT THE DRIPPING MODE OF ELECTROSPRAYS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 425-431. CSTR: 32045.14.0459-1879-18-256
Citation: Yuanping Huo, Junfeng Wang, Ziwen Zuo, Hailong Liu. ELECTROHYDRODYNAMIC CHARACTERISTICS OF LIQUID BRIDGE FORMATION AT THE DRIPPING MODE OF ELECTROSPRAYS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 425-431. CSTR: 32045.14.0459-1879-18-256

滴状模式下液桥形成及断裂的电流体动力学特性研究

基金项目: 国家自然科学基金(51706089);江苏省自然科学基金(BK20160517);中国博士后基金(2016M601734);中国博士后基金(2015M581732)
详细信息
    作者简介:

    2) 王军锋,教授,主要研究方向:荷电多相流理论及工程应用.E-mail: wangjunfeng@ujs.edu.cn

  • 中图分类号: TK018

ELECTROHYDRODYNAMIC CHARACTERISTICS OF LIQUID BRIDGE FORMATION AT THE DRIPPING MODE OF ELECTROSPRAYS

  • 摘要: 对电场作用下微通道荷电液滴脱落过程中液桥形成及断裂的显微演变特征进行了可视化实验研究.借助时空分辨率较高的高速摄像技术精确捕捉了电场作用下液桥形成及断裂的界面演化过程,研究了液桥的界面结构变化及其断裂的动力学显微演变行为,获得了时间特征数、电邦德数及半月面形成角对液桥长度及断裂顺序的作用规律.实验结果显示,液桥断裂长度取决于黏度与表面张力之比,而受荷电弛豫时间的影响甚微,低电压工况下各实验介质液桥相对长度的变化并不明显,而在较高电压工况下相对液桥长度的增长速度加快.随着电邦德数的不断增加,液桥长度的变化在较高邦德数下更为明显且存在突变区,此时伴随着雾化模式的转变,表明液桥的突变恰恰是雾化模式过渡的信号.不同物性介质的射流过渡行为由于液桥上下游形成角的变化而存在较大差异.对于无水乙醇介质,电邦德数的增加使滴状模式首先过渡到纺锤模式,而对于生物柴油,滴状模式后会首先出现脉动模式而非纺锤模式.
    Abstract: A detailed visualization study on the evolution of Liquid bridge formation and fracture from a capillary is reported. By means of high-speed microscopy with high time-space resolution, special attention has been paid to the formation dynamics of the liquid bridge in the dripping mode, the change of interface structure and the fracture dynamics behavior of hydraulic bridge are studied, and the action rule of time characteristic number, electric Bond number and half-moon angle on liquid length and fracture order of liquid bridge is obtained. The results show that the fracture length of liquid bridge depends on the ratio of viscosity to surface tension, but is little affected by the relaxation time of charge. Under low voltage condition, the change of liquid bridge relative length for each experiment medium is not obvious, while the relative length of liquid bridge grows rapidly during high voltage condition. With the continuous increase of electric Bond number, the change of liquid bridge length is more obvious under the higher Bond number, and a mutation zone occur which shows the transition of the atomization model, this means the mutation of liquid bridge is a transition signal of atomization modes. With the changes of the formation angle of liquid bridge upstream and downstream, the transition behavior of jet flow in different physical media varies greatly. In the case of ethyl alcohol, the increase in the number of electric bonds causes the dropping mode to first transition to the spindle mode, while in the case of biodiesel, the pulsation mode rather than the spindle mode will first appear after the dropping mode. It is of great significance to reveal the transition law of charged micro fluidic atomization model and enrich the theory of electrostatic atomization.
  • [1] Jaworek A, Lackowski M, Krupa A , et al. Electrostatic interaction of free EHD jets. Experiments in Fluids, 2006,40(4):568-576
    [2] Varea A, Monereo O, Xuriguera E , et al. Electrospray as a suitable technique for manufacturing carbon-based devices. Journal of Physics D Applied Physics, 2017,50(31):315301
    [3] 刘海龙, 沈学峰, 王睿 等. 纳米流体液滴撞击壁面铺展动力学特性研究. 力学学报, 2018,50(5):1024-1031
    [3] ( Liu Hailong, Shen Xuefeng, Wang Rui , et al. Study on spreading characteristics of nanofluids droplet impinging on solid surface. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(5):1024-1031 (in Chinese))
    [4] 郑捷庆, 庄友明, 张军 等. 高电压技术在制冷设备除霜中的应用. 高电压技术, 2007,33(12):97-100
    [4] ( Zheng Jieqing, Zhuang Youming, Zhang Jun . Application of high voltage technology in refrigeration equipment defrosting. High Voltage Engineering, 2007,33(12):97-100 (in Chinese))
    [5] 甘云华, 江政纬, 李海鸽 . 锥射流模式下乙醇静电喷雾液滴速度特性分析. 力学学报, 2017,49(6):1272-1279
    [5] ( Gan Yunhua, Jiang Zhengwei, Li Haige . A study on droplet velocity of ethanol during electrospraying process at cone-jet mode. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(6):1272-1279 (in Chinese))
    [6] Dharmansh, Chokshi P . Axisymmetric instability in a thinning electrified jet. Physical Review E, 2016,93(4-1):043124
    [7] 李帅兵, 杨睿, 罗喜胜 等. 气流作用下同轴带电射流的不稳定性研究. 力学学报, 2017,49(5):997-1007
    [7] ( Li Shuaibing, Yang Rui, Luo Xisheng , et al. Instability study of an electrified coaxial jet in a coflowing gas stream. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(5):997-1007 (in Chinese))
    [8] 吕明, 宁智, 阎凯 . 可压缩旋转气体中超空化射流的热稳定性. 力学学报, 2018,50(3):561-569
    [8] ( Lü Ming, Ning Zhi, Yan Kai . Thermal stability of supercavitating jet in a compressible rotary gas. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(3):561-569 (in Chinese))
    [9] Lord Rayleigh FRS . XX. On the equilibrium of liquid conducting masses charged with electricity. Philosophical Magazine, 2009,14(87):184-186
    [10] Zeleny J . On the conditions of instability of liquid drops with applications to the electrical discharge from liquid point. Proc. Camb. Phil. Soc, 1915,18(3):71-83
    [11] Taylor GI, Mcewan A D . The stability of a horizontal fluid interface in a vertical electric field. Journal of Fluid Mechanics, 2006,22(1):1-15
    [12] Taylor G . Studies in electrohydrodynamics. I. The circulation produced in a drop by electrical field. Proceedings of the Royal Society A, 1966,291(1425):159-166
    [13] Taylor G . Electrically driven jets. Proceedings of the Royal Society of London, 1969,313(1515):453-475
    [14] And JRM, Taylor GI . Electrohydrodynamics: A review of the role of interfacial shear stresses. Annual Review of Fluid Mechanics, 1969,1(1):111-146
    [15] Jaworek A, Krupa A . Jet and drops formation in electrohydrodynamic spraying of liquids. A systematic approach. Experiments in Fluids, 1999,27(1):43-52
    [16] Zhang X, Basaran OA . Dynamics of drop formation from a capillary in the presence of an electric field. Journal of Fluid Mechanics, 1996( 1), 326:239-263
    [17] Lee BS, Cho HJ, Lee JG , et al. Drop formation via break of a liquid bridge in an AC electric field. Journal of Colloid and Interface Science, 2006,302(1):294-307
    [18] Rubio-Rubio M, Taconet P, Sevilla A . Dripping dynamics and transitions at high Bond numbers. International Journal of Multiphase Flow, 2018,104(7):206-213
    [19] Salehi MS, Esfidani MT, Afshin H , et al. Experimental investigation and comparison of Newtonian and non-Newtonian shear-thinning drop formation. Experimental Thermal and Fluid Science, 2018,94(6):148-158
    [20] Reznik SN, Yarin AL, Theron A , et al. Transient and steady shapes of droplets attached to a surface in a strong electric field. Journal of Fluid Mechanics, 2004,516(516):349-377
    [21] Coelho R . Properties of the tip-plane configuration. Journal of Physics d--Applied Physics, 1971,4(9):1266-1280
    [22] 霍元平, 王军锋, 毛文龙 等. 荷电液滴脉动变形特性的实验研究. 工程热物理学报, 2013,34(1):99-102
    [22] ( Huo Yuanping, Wang Junfeng, Mao Wenlong , et al. Experimental study on oscillation and deformation of charged droplet. Journal of Engineering Thermophysics, 2013,34(1):99-102 (in Chinese))
    [23] Yun O, Gjonaj E, Weiland T , et al. Electrohydrodynamic simulation of electrically controlled droplet generation. International Journal of Heat and Fluid Flow, 2017,64(1):120-128
    [24] Lopez-Herrera JM, Ga?án-Calvo AM, Perez-Saborid M . One-dimensional simulation of the breakup of capillary jets of conducting liquids. Application to EHD spraying. Journal of Aerosol Science, 1999,30(7):895-912
  • 期刊类型引用(8)

    1. 王贞涛,陈永钟,孔茜,杨诗琪,王其锶,岑旗钢. 针-板电极间静电雾化微射流的动力学特性. 江苏大学学报(自然科学版). 2023(03): 344-350 . 百度学术
    2. 王晓,吴晓亮,施雷庭,刘静静,叶仲斌,刘万发,秦国伟. 智能水驱基于界面离子调控机制的提高采收率机理研究. 应用化工. 2023(07): 1962-1967+1973 . 百度学术
    3. 陈宁光,甘云华. 基于格子Boltzmann方法的荷电液滴蒸发及传热研究. 化工学报. 2023(12): 4829-4839 . 百度学术
    4. 夏睦威,刘威. 基于电流体动力学的微液滴喷印系统. 电子设计工程. 2022(12): 38-42+47 . 百度学术
    5. 章绍能,胡开鑫. 黏弹性液滴热毛细迁移的对流不稳定. 力学学报. 2021(05): 1313-1323 . 本站查看
    6. 任彦霖,刘赵淼,逄燕,王翔. 基于LBM的铝微滴斜柱沉积水平偏移研究. 力学学报. 2021(06): 1599-1608 . 本站查看
    7. 杨诗琪,王贞涛,夏磊. 静电雾化微滴模式下液滴周期性喷射的实验研究. 高电压技术. 2021(12): 4388-4395 . 百度学术
    8. 张志伟,殷翔宇,朱春英,马友光,付涛涛. 台阶式并行微通道内气泡群自组装行为及其对气泡生成的反馈效应. 力学学报. 2020(02): 420-430 . 本站查看

    其他类型引用(4)

计量
  • 文章访问数:  1316
  • HTML全文浏览量:  193
  • PDF下载量:  289
  • 被引次数: 12
出版历程
  • 收稿日期:  2018-08-03
  • 刊出日期:  2019-03-17

目录

    /

    返回文章
    返回