[1] | 曹登庆, 白坤朝, 丁虎 等. 大型柔性航天器动力学与振动控制研究进展. 力学学报, 2019,51(1):1-13 | [1] | ( Cao Dengqing, Bai Kunchao, Ding Hu , et al. Advances in dynamics and vibration control of large-scale flexible spacecraft. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):1-13 (in Chinese)) | [2] | 董瑶海 . 航天器微振动-理论与实践. 北京: 中国宇航出版社, 2015 | [2] | ( Dong Yaohai. Micro-Vibration of Spacecraft-Theory and Practice. Beijing: China Aerospace Press, 2015 (in Chinese)) | [3] | 陆泽琦, 陈立群 . 非线性被动隔振的若干进展. 力学学报, 2017,49(3):550-564 | [3] | ( Lu Zeqi, Chen Liqun . Some recent progresses in nonlinear passive isolations of vibrations. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(3):550-564 (in Chinese)) | [4] | 李帅, 周继磊, 任传波 等. 时变参数时滞减振控制研究. 力学学报, 2018,50(1):99-108 | [4] | ( Li Shuai, Zhou Jilei, Ren Chuanbo , et al. The research of time delay vibration control with time-varying parameters. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(1):99-108 (in Chinese)) | [5] | Joule J . On a new class of magnetic forces. Ann Electr Magn Chem, 1842,8(1842):219-224 | [6] | 毛剑琴 . 智能结构动力学与控制. 北京: 科学出版社, 2013 | [6] | ( Mao Jianqin. Dynamics and Control of Smart Structure. Beijing: Science Press, 2013 (in Chinese)) | [7] | Huber JE, Fleck NA, Ashby MF . The Selection of Mechanical Actuators Based on Performance Indices. Proceedings Mathematical Physical & Engineering Sciences, 1997,453(1965):2185-2205 | [8] | Kim WJ, Sadighi A . A novel low-power linear magnetostrictive actuator with local three-phase excitation. IEEE/ASME Transactions on Mechatronics, 2010,15(2):299-307 | [9] | Xue G, Zhang P, Li X , et al. A review of giant magnetostrictive injector (GMI). Sensors & Actuators A Physical, 2018,273:159-181 | [10] | Zhu Y, Yang X, Fu T . Dynamic modeling and experimental investigations of a magnetostrictive nozzle-flapper servovalve pilot stage. Proceedings of the Institution of Mechanical Engineers Part I Journal of Systems & Control Engineering, 2016,230(3):197-207 | [11] | Yoshioka H, Shinno H, Sawano H . A newly developed rotary-linear motion platform with a giant magnetostrictive actuator. CIRP Annals-Manufacturing Technology, 2013,62(1):371-374 | [12] | Park G, Bement MT, Hartman DA , et al. The use of active materials for machining processes: A review. International Journal of Machine Tools & Manufacture, 2007,47(15):2189-2206 | [13] | Sun X, Yang B, Zhao L , et al. Optimal design and experimental analyses of a new micro-vibration control payload-platform. Journal of Sound & Vibration, 2016,374:43-60 | [14] | 段博文 . 应用超磁致伸缩材料的可控式液压悬置隔振特性研究.[硕士论文]. 南京:南京航空航天大学, 2016 | [14] | ( Duan Bowen . Dynamic Analysis and Control of an Active Power-train Mount Based on Magnetostrictive Actuator. [Master Thesis]. Nanjing: Nanjing University of Aeronautics & Astronautics, 2016 (in Chinese)) | [15] | Nakamura Y, Nakayama M, Masuda K , et al. Development of active six-degrees-of-freedom microvibration control system using giant magnetostrictive actuators. Smart Materials & Structures, 2000,9(2):175-185 | [16] | Nakamura Y, Nakayama M, Yasuda M , et al. Development of active six-degrees-of-freedom micro-vibration control system using hybrid actuators comprising air actuators and giant magnetostrictive actuators. Smart Materials & Structures, 2006,15(4):1133-1142. | [17] | Geng Z J, Haynes L S . Six degree-of-freedom active vibration control using the Stewart platforms. IEEE Transactions on Control Systems Technology, 2002,2(1):45-53 | [18] | Braghin F, Cinquemani S, Resta F . A model of magnetostrictive actuators for active vibration control. Sensors & Actuators A Physical, 2011,165(2):342-350 | [19] | Zhou HM, Zheng XJ, Zhou YH . Active vibration control of nonlinear giant magnetostrictive actuators. Smart Materials & Structures, 2006,15(3):792-798 | [20] | Zhang T, Yang BT, Li HG , et al. Dynamic modeling and adaptive vibration control study for giant magnetostrictive actuators. Sensors and Actuators A: Physical, 2013,190:96-105 | [21] | Kellogg RA, Flatau AB . Stress-strain relationship in Terfenol-D. Proceedings of SPIE-The International Society for Optical Engineering, 2001,4327:541-549 | [22] | Datta S, Atulasimha J, Mudivarthi C , et al. Stress and magnetic field-dependent Young's modulus in single crystal iron-gallium alloys. Journal of Magnetism and Magnetic Materials, 2010,322(15):2135-2144 | [23] | Sablik MJ, Jiles DC . Coupled magnetoelastic theory of magnetic and magnetostrictive hysteresis. IEEE Transactions on Magnetics, 1993,29(4):2113-2123 | [24] | Jiles D . Theory of the magnetomechanical effect. Journal of Physics D: Applied Physics, 1995,28(8):1537-1546 | [25] | Zheng XJ, Liu X . A nonlinear constitutive model for Terfenol-D rods. Journal of Applied Physics, 2005,97(5):61-68 | [26] | Niu M, Yang B, Yang Y , et al. Two generalized models for planar compliant mechanisms based on tree structure method. Precision Engineering, 2017,51:137-144 | [27] | Jiles D, Atherton D . Ferromagnetic hysteresis. IEEE Transactions on Magnetics, 1983,19(5):2183-2185 | [28] | Sablik M, Jiles D . A model for hysteresis in magnetostriction. Journal of Applied Physics, 1988,64(10):5402-5404 | [29] | Yang Y, Yang B, Niu M . Adaptive trajectory tracking of magnetostrictive actuator based on preliminary hysteresis compensation and further adaptive filter controller. Nonlinear Dynamics, 2018,92(9):1-10 | [30] | Al Janaideh M, Aljanaideh O . Further results on open-loop compensation of rate-dependent hysteresis in a magnetostrictive actuator with the Prandtl-Ishlinskii model. Mechanical Systems & Signal Processing, 2018,104:835-850 |
|