EI、Scopus 收录
中文核心期刊

磁致伸缩主被动隔振装置中的磁机耦合效应研究

牛牧青, 杨斌堂, 杨诣坤, 孟光, 陈立群

牛牧青, 杨斌堂, 杨诣坤, 孟光, 陈立群. 磁致伸缩主被动隔振装置中的磁机耦合效应研究[J]. 力学学报, 2019, 51(2): 324-332. DOI: 10.6052/0459-1879-18-254
引用本文: 牛牧青, 杨斌堂, 杨诣坤, 孟光, 陈立群. 磁致伸缩主被动隔振装置中的磁机耦合效应研究[J]. 力学学报, 2019, 51(2): 324-332. DOI: 10.6052/0459-1879-18-254
Muqing Niu, Bintang Yang, Yikun Yang, Guang Meng, Liqun Chen. RESEARCH ON THE MAGNETO-MECHANICAL EFFECT IN ACTIVE AND PASSIVE MAGNETOSTRICTIVE VIBRATION ISOLATOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 324-332. DOI: 10.6052/0459-1879-18-254
Citation: Muqing Niu, Bintang Yang, Yikun Yang, Guang Meng, Liqun Chen. RESEARCH ON THE MAGNETO-MECHANICAL EFFECT IN ACTIVE AND PASSIVE MAGNETOSTRICTIVE VIBRATION ISOLATOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 324-332. DOI: 10.6052/0459-1879-18-254
牛牧青, 杨斌堂, 杨诣坤, 孟光, 陈立群. 磁致伸缩主被动隔振装置中的磁机耦合效应研究[J]. 力学学报, 2019, 51(2): 324-332. CSTR: 32045.14.0459-1879-18-254
引用本文: 牛牧青, 杨斌堂, 杨诣坤, 孟光, 陈立群. 磁致伸缩主被动隔振装置中的磁机耦合效应研究[J]. 力学学报, 2019, 51(2): 324-332. CSTR: 32045.14.0459-1879-18-254
Muqing Niu, Bintang Yang, Yikun Yang, Guang Meng, Liqun Chen. RESEARCH ON THE MAGNETO-MECHANICAL EFFECT IN ACTIVE AND PASSIVE MAGNETOSTRICTIVE VIBRATION ISOLATOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 324-332. CSTR: 32045.14.0459-1879-18-254
Citation: Muqing Niu, Bintang Yang, Yikun Yang, Guang Meng, Liqun Chen. RESEARCH ON THE MAGNETO-MECHANICAL EFFECT IN ACTIVE AND PASSIVE MAGNETOSTRICTIVE VIBRATION ISOLATOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 324-332. CSTR: 32045.14.0459-1879-18-254

磁致伸缩主被动隔振装置中的磁机耦合效应研究

基金项目: 国家自然科学基金资助项目(51775349)
详细信息
    作者简介:

    2) 陈立群,教授,主要研究方向:非线性动力学与振动控制.E-mail: chenliqun@hit.edu.cn

  • 中图分类号: O328

RESEARCH ON THE MAGNETO-MECHANICAL EFFECT IN ACTIVE AND PASSIVE MAGNETOSTRICTIVE VIBRATION ISOLATOR

  • 摘要: 磁致伸缩材料和柔顺位移放大机构组成的主动驱动装置具有精度高、驱动力大等特点.将其与被动隔振装置并联,形成主被动隔振装置,可以弥补纯被动隔振在低频和微幅扰动工况下的不足.本文针对这类磁致伸缩主被动隔振装置进行磁机耦合效应研究.基于Jiles-Atherton模型,分析了磁致伸缩材料所受应力对有效磁场、磁化强度、磁致伸缩系数和材料杨氏模量的影响,表征了材料磁机耦合效应.在此基础上,建立了主被动隔振装置的动力学模型,分析了主动驱动装置与被动隔振装置间的耦合作用.在耦合作用影响下,若被动隔振装置刚度不同,即使输入磁场相同,驱动器产生的驱动位移和驱动力也不相同.磁致伸缩材料的变刚度效应使隔振装置整体等效刚度不再为定值,从而影响被动隔振效果.本文提出了通过柔顺机构参数设计减小前述两种耦合影响的方法.数值仿真结果表明,磁致伸缩主被动隔振装置在低于、接近和高于谐振频率三类扰动下,都能达到比被动隔振更好的振动抑制效果.此外,仿真结果验证了考虑磁机耦合效应的数值模型具有更高精度.
    Abstract: The actuation system, which is composed of magnetostrictive actuator and compliant displacement amplifier, has the advantages of high precision and large actuation force. It is connected in parallel with passive vibration isolator. The resulting active and passive vibration isolator can make up for the deficiencies of passive isolator on low-frequency and micro-amplitude conditions. In this paper, a nonlinear magnetostrictive actuation model is proposed based on Jiles-Atherton model. Magneto-mechanical effect is comprehensively characterized by being decomposed into stress related effects on effective field, magnetization, magnetostriction and Young's modulus. A dynamic model of the isolator is established considering the coupling effects between active isolator and passive isolator. With the coupling effect, the performance of actuation system is related to passive isolator parameters. With higher passive isolator stiffness, the actuation displacement decreases and the required actuation force increases. The coupling effect also leads to the change of equivalent stiffness of the isolator due to the ?E effect of magnetostrictive material. The influence of coupling effects can be weakened by parameter design of compliant amplifier. The performances of the active and passive vibration isolator are validated by numerical simulation. Three kinds of vibration frequencies are used, which are below, around and beyond natural frequency of the isolator, respectively. Compared to passive vibration isolator, better vibration isolation performances are acquired by adding active vibration isolator on all three conditions. And the calculation results show that the proposed model considering magneto-mechanical effect can reach a higher accuracy.
  • [1] 曹登庆, 白坤朝, 丁虎 等. 大型柔性航天器动力学与振动控制研究进展. 力学学报, 2019,51(1):1-13
    [1] ( Cao Dengqing, Bai Kunchao, Ding Hu , et al. Advances in dynamics and vibration control of large-scale flexible spacecraft. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):1-13 (in Chinese))
    [2] 董瑶海 . 航天器微振动-理论与实践. 北京: 中国宇航出版社, 2015
    [2] ( Dong Yaohai. Micro-Vibration of Spacecraft-Theory and Practice. Beijing: China Aerospace Press, 2015 (in Chinese))
    [3] 陆泽琦, 陈立群 . 非线性被动隔振的若干进展. 力学学报, 2017,49(3):550-564
    [3] ( Lu Zeqi, Chen Liqun . Some recent progresses in nonlinear passive isolations of vibrations. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(3):550-564 (in Chinese))
    [4] 李帅, 周继磊, 任传波 等. 时变参数时滞减振控制研究. 力学学报, 2018,50(1):99-108
    [4] ( Li Shuai, Zhou Jilei, Ren Chuanbo , et al. The research of time delay vibration control with time-varying parameters. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(1):99-108 (in Chinese))
    [5] Joule J . On a new class of magnetic forces. Ann Electr Magn Chem, 1842,8(1842):219-224
    [6] 毛剑琴 . 智能结构动力学与控制. 北京: 科学出版社, 2013
    [6] ( Mao Jianqin. Dynamics and Control of Smart Structure. Beijing: Science Press, 2013 (in Chinese))
    [7] Huber JE, Fleck NA, Ashby MF . The Selection of Mechanical Actuators Based on Performance Indices. Proceedings Mathematical Physical & Engineering Sciences, 1997,453(1965):2185-2205
    [8] Kim WJ, Sadighi A . A novel low-power linear magnetostrictive actuator with local three-phase excitation. IEEE/ASME Transactions on Mechatronics, 2010,15(2):299-307
    [9] Xue G, Zhang P, Li X , et al. A review of giant magnetostrictive injector (GMI). Sensors & Actuators A Physical, 2018,273:159-181
    [10] Zhu Y, Yang X, Fu T . Dynamic modeling and experimental investigations of a magnetostrictive nozzle-flapper servovalve pilot stage. Proceedings of the Institution of Mechanical Engineers Part I Journal of Systems & Control Engineering, 2016,230(3):197-207
    [11] Yoshioka H, Shinno H, Sawano H . A newly developed rotary-linear motion platform with a giant magnetostrictive actuator. CIRP Annals-Manufacturing Technology, 2013,62(1):371-374
    [12] Park G, Bement MT, Hartman DA , et al. The use of active materials for machining processes: A review. International Journal of Machine Tools & Manufacture, 2007,47(15):2189-2206
    [13] Sun X, Yang B, Zhao L , et al. Optimal design and experimental analyses of a new micro-vibration control payload-platform. Journal of Sound & Vibration, 2016,374:43-60
    [14] 段博文 . 应用超磁致伸缩材料的可控式液压悬置隔振特性研究.[硕士论文]. 南京:南京航空航天大学, 2016
    [14] ( Duan Bowen . Dynamic Analysis and Control of an Active Power-train Mount Based on Magnetostrictive Actuator. [Master Thesis]. Nanjing: Nanjing University of Aeronautics & Astronautics, 2016 (in Chinese))
    [15] Nakamura Y, Nakayama M, Masuda K , et al. Development of active six-degrees-of-freedom microvibration control system using giant magnetostrictive actuators. Smart Materials & Structures, 2000,9(2):175-185
    [16] Nakamura Y, Nakayama M, Yasuda M , et al. Development of active six-degrees-of-freedom micro-vibration control system using hybrid actuators comprising air actuators and giant magnetostrictive actuators. Smart Materials & Structures, 2006,15(4):1133-1142.
    [17] Geng Z J, Haynes L S . Six degree-of-freedom active vibration control using the Stewart platforms. IEEE Transactions on Control Systems Technology, 2002,2(1):45-53
    [18] Braghin F, Cinquemani S, Resta F . A model of magnetostrictive actuators for active vibration control. Sensors & Actuators A Physical, 2011,165(2):342-350
    [19] Zhou HM, Zheng XJ, Zhou YH . Active vibration control of nonlinear giant magnetostrictive actuators. Smart Materials & Structures, 2006,15(3):792-798
    [20] Zhang T, Yang BT, Li HG , et al. Dynamic modeling and adaptive vibration control study for giant magnetostrictive actuators. Sensors and Actuators A: Physical, 2013,190:96-105
    [21] Kellogg RA, Flatau AB . Stress-strain relationship in Terfenol-D. Proceedings of SPIE-The International Society for Optical Engineering, 2001,4327:541-549
    [22] Datta S, Atulasimha J, Mudivarthi C , et al. Stress and magnetic field-dependent Young's modulus in single crystal iron-gallium alloys. Journal of Magnetism and Magnetic Materials, 2010,322(15):2135-2144
    [23] Sablik MJ, Jiles DC . Coupled magnetoelastic theory of magnetic and magnetostrictive hysteresis. IEEE Transactions on Magnetics, 1993,29(4):2113-2123
    [24] Jiles D . Theory of the magnetomechanical effect. Journal of Physics D: Applied Physics, 1995,28(8):1537-1546
    [25] Zheng XJ, Liu X . A nonlinear constitutive model for Terfenol-D rods. Journal of Applied Physics, 2005,97(5):61-68
    [26] Niu M, Yang B, Yang Y , et al. Two generalized models for planar compliant mechanisms based on tree structure method. Precision Engineering, 2017,51:137-144
    [27] Jiles D, Atherton D . Ferromagnetic hysteresis. IEEE Transactions on Magnetics, 1983,19(5):2183-2185
    [28] Sablik M, Jiles D . A model for hysteresis in magnetostriction. Journal of Applied Physics, 1988,64(10):5402-5404
    [29] Yang Y, Yang B, Niu M . Adaptive trajectory tracking of magnetostrictive actuator based on preliminary hysteresis compensation and further adaptive filter controller. Nonlinear Dynamics, 2018,92(9):1-10
    [30] Al Janaideh M, Aljanaideh O . Further results on open-loop compensation of rate-dependent hysteresis in a magnetostrictive actuator with the Prandtl-Ishlinskii model. Mechanical Systems & Signal Processing, 2018,104:835-850
  • 期刊类型引用(8)

    1. 闫洪波,付鑫,汪建新,于均成,马庆振,杨伯军. 超磁致伸缩致动器非线性动力学的分数阶时滞反馈控制. 振动工程学报. 2024(04): 632-644 . 百度学术
    2. 王辰,王文熙,陈政清,张宏剑,吴会强. 重复使用运载火箭机构电涡流阻尼技术应用及思考. 宇航材料工艺. 2024(02): 43-53 . 百度学术
    3. 秦宇,韩云鹏. 基于磁机械效应的铁磁材料漏磁检测数值模拟. 哈尔滨工业大学学报. 2023(01): 47-54 . 百度学术
    4. 张兵,黄华,蔡佳敏,蒋子良,朱方正,汤少东,钱鹏飞. 冗余六自由度并联隔振平台多维隔振性能研究. 振动与冲击. 2022(02): 26-32 . 百度学术
    5. 邓宏碧,李波,舒亮,王鹏威. 超磁致伸缩作动器变刚度特征和阻抗网络模型. 机械设计与研究. 2022(04): 71-77 . 百度学术
    6. 苏贤,项宇锴. 不同负载特性下的全工况电流互感器仿真研究. 电气技术. 2021(02): 48-53+77 . 百度学术
    7. 余淑荣,王志文,张来喜,吴明亮. 自动化技术、计算机技术手术制孔机器人研究进展. 科学技术与工程. 2021(15): 6105-6113 . 百度学术
    8. 胡克强,高存法,仲政,Chen Zengtao. 磁-电-弹性半空间在轴对称热载荷作用下的三维问题研究. 力学学报. 2020(05): 1235-1244 . 本站查看

    其他类型引用(9)

计量
  • 文章访问数:  1761
  • HTML全文浏览量:  224
  • PDF下载量:  290
  • 被引次数: 17
出版历程
  • 收稿日期:  2018-08-01
  • 刊出日期:  2019-03-17

目录

    /

    返回文章
    返回