EI、Scopus 收录
中文核心期刊

不同控制角下附加圆柱对圆柱涡激振动影响

陈威霖, 及春宁, 许栋

陈威霖, 及春宁, 许栋. 不同控制角下附加圆柱对圆柱涡激振动影响[J]. 力学学报, 2019, 51(2): 432-440. DOI: 10.6052/0459-1879-18-208
引用本文: 陈威霖, 及春宁, 许栋. 不同控制角下附加圆柱对圆柱涡激振动影响[J]. 力学学报, 2019, 51(2): 432-440. DOI: 10.6052/0459-1879-18-208
Weilin Chen, Chunning Ji, Dong Xu. EFFECTS OF THE ADDED CYLINDERS WITH DIFFERENT CONTROL ANGLES ON THE VORTEX-INDUCED VIBRATIONS OF A CIRCULAR CYLINDER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 432-440. DOI: 10.6052/0459-1879-18-208
Citation: Weilin Chen, Chunning Ji, Dong Xu. EFFECTS OF THE ADDED CYLINDERS WITH DIFFERENT CONTROL ANGLES ON THE VORTEX-INDUCED VIBRATIONS OF A CIRCULAR CYLINDER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 432-440. DOI: 10.6052/0459-1879-18-208
陈威霖, 及春宁, 许栋. 不同控制角下附加圆柱对圆柱涡激振动影响[J]. 力学学报, 2019, 51(2): 432-440. CSTR: 32045.14.0459-1879-18-208
引用本文: 陈威霖, 及春宁, 许栋. 不同控制角下附加圆柱对圆柱涡激振动影响[J]. 力学学报, 2019, 51(2): 432-440. CSTR: 32045.14.0459-1879-18-208
Weilin Chen, Chunning Ji, Dong Xu. EFFECTS OF THE ADDED CYLINDERS WITH DIFFERENT CONTROL ANGLES ON THE VORTEX-INDUCED VIBRATIONS OF A CIRCULAR CYLINDER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 432-440. CSTR: 32045.14.0459-1879-18-208
Citation: Weilin Chen, Chunning Ji, Dong Xu. EFFECTS OF THE ADDED CYLINDERS WITH DIFFERENT CONTROL ANGLES ON THE VORTEX-INDUCED VIBRATIONS OF A CIRCULAR CYLINDER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 432-440. CSTR: 32045.14.0459-1879-18-208

不同控制角下附加圆柱对圆柱涡激振动影响

基金项目: 国家自然科学基金(51621092);国家自然科学基金(51579175);国家自然科学基金(51779172);NSFC-广东联合基金(第二期)(U1501501)
详细信息
    作者简介:

    2) 及春宁,教授,主要研究方向:流固耦合,涡激振动,泥沙运动.E-mail: cnji@tju.edu.cn

  • 中图分类号: P751,TB531

EFFECTS OF THE ADDED CYLINDERS WITH DIFFERENT CONTROL ANGLES ON THE VORTEX-INDUCED VIBRATIONS OF A CIRCULAR CYLINDER

  • 摘要: 在弹性支撑的圆柱周围布置直径更小圆柱会影响剪切层发展以及旋涡脱落,进而改变其涡激振动状态.通过不同的布置形式和附加小圆柱个数可以实现对圆柱涡激振动的促进或抑制.激励更大幅值的振动可以更好地将水流动能转化为可利用的机械能或电能,抑制其振动则可以实现对海洋平台等结构物的保护.采用基于迭代的嵌入式浸入边界法对前侧对称布置两个小圆柱的圆柱涡激振动进行数值模拟研究,系统仅做横向振动,其中基于主圆柱直径的雷诺数为100,质量比为2.0,折合流速为3~11.小圆柱与主圆柱的直径比为0.125,间隙比为0.125.结果表明,在研究的控制角范围内(30°~90°),附加小圆柱可以很大程度上改变圆柱涡激振动的状态.当控制角较小(30°)时,附加小圆柱对主圆柱的振动起抑制作用;当控制角为45°~60°时,圆柱的振动分为涡振和弛振两个阶段,在弛振阶段,圆柱振幅随折合流速增加而持续增加;当控制角较大(75°~90°)时,附加小圆柱的促进作用随着控制角增加而减小.进一步地,结合一个周期内不同时刻旋涡脱落以及圆周压强分布,解释了附加小圆柱对主圆柱涡激振动的作用机制.应用能量系数对圆柱系统的进一步分析发现,弛振阶段由流体传递到主圆柱的能量系数随折合流速的增加逐渐下降,旋涡结构的改变是产生这种变化的直接原因.
    Abstract: Vortex-induced vibrations of an elastically mounted circular cylinder will be altered through influencing the development of the boundary layer of the surface and the vortex shedding by the added smaller cylinders. The excitation or suppression of vortex-induced vibrations can be obtained by changing the arrangement and number of the small cylinders. In the former, more fluid energy can be transformed into mechanical energy or electricity while the latter can be applied to protect the structures. Numerical simulations of a transversely vibrating cylinder with two small cylinders behind were conducted, where the Reynolds number is 100, based on the main cylinder, the mass ratio is 2.0 and the reduced velocity is 3~11. The diameter ratio between the small and the main cylinder is 0.125 and the gap ratio is 0.125. Results indicate that the small cylinders can change the vibration of the main cylinder significantly in the simulated control angle range of 30°~90°. When the control angle is small (30°), the small cylinder suppresses the vibration of the main cylinder. The response can be divided into two branches, i.e. VIV-and galloping-branch, at the control angle of 45°~60°. The vibration amplitude increases monotonically with the increasing reduced velocity in the galloping branch. When the control angle is large (75°~90°), the promotion from the small cylinder decreases with the increase of the control angle. Furtherly, mechanisms of the small cylinders are explained by combining vortex shedding and pressure distribution around the cylinder of different instants in one period. Analysis of the energy coefficient indicates that the energy transferred from the fluid to the main cylinder decreases with the reduced velocity, which is caused by the variation of vortex structures.
  • [1] Sarpkaya T . A critical review of the intrinsic nature of vortex-induced vibrations. Journal of Fluids and Structures, 2004,19:389-447
    [2] Wu X, Ge F, Hong Y . A review of recent studies on vortex-induced vibrations of long slender cylinders. Journal of Fluids and Structures, 2012,28:292-308
    [3] Williamson CHK, Govardhan R . Vortex-induced vibrations. Annual Review of Fluid Mechanics, 2004,36:413-455
    [4] Blevins RD . Flow-Induced Vibrations. New York: Van Nostrand Reinhold, 1990
    [5] Bernitsas MM, Raghavan K, Ben-Simon Y , et al. VIVACE (vortex induced vibration aquatic clean energy): A new concept in generation of clean and renewable energy from fluid flow. Journal of Offshore Mechanics and Arctic Engineering, ASME Transactions, 2008,130(4):041101-041115
    [6] Sakamoto H, Haniu H . Optimum suppression of fluid forces acting in a circular cylinder. Journal of Fluids Engineering, 1994,116:221-227
    [7] Strykowski PJ, Sreenivasan KR . On the formation and suppression of vortex `shedding' at low Reynolds numbers. Journal of Fluid Mechanics, 1990,218:71-107
    [8] Wu W, Wang J . Numerical simulation of VIV for a circular cylinder with a downstream control rod at low Reynolds number. European Journal of Mechanics-B/Fluids, 2018,68:153-166
    [9] Schulmeister JC, Dahl JM, Weymouth GD , et al. Flow control with rotating cylinders. Journal of Fluid Mechanics, 2017,825:743-763
    [10] Zhu H, Yao J, Ma Y , et al. Simultaneous CFD evaluation of VIV suppression using smaller control cylinders. Journal of Fluids and Structures, 2015,57:66-80
    [11] Zhu H, Gao Y . Vortex-induced vibration suppression of a main circular cylinder with two rotating control rods in its near wake: Effect of the rotation direction. Journal of Fluids and Structures, 2017,74:469-491
    [12] Muddada S, Patnaik BSV . An active flow control strategy for the suppression of vortex structures behind a circular cylinder. European Journal of Mechanics-B/Fluids, 2010,29:93-104
    [13] 李椿萱, 彭少波, 吴子牛 . 附属小圆柱对主圆柱绕流影响的数值模拟. 北京航空航天大学学报, 2003,29(11):951-958
    [13] ( Lee Chunhian, Peng Shaobo, Wu Ziniu . Numerical study of flow around a main cylinder by controlled satellite cylinders. Journal of Beijing University of Aeronautics and Astronautics, 2003,29(11):951-958 (in Chinese))
    [14] Jiménez-González JI, Huera-Huarte FJ . Experimental sensitivity of vortex-induced vibrations to localized wake perturbations. Journal of Fluids and Structures, 2017,74:53-63
    [15] Korkischko I, Meneghini JR . Suppression of vortex-induced vibration using moving surface boundary-layer control. Journal of Fluids and Structures, 2012,34:259-270
    [16] Silva-Ortega M, Assi GRS . Hydrodynamic loads on a circular cylinder surrounded by two, four and eight wake-control cylinders. Ocean Engineering, 2018,153:345-352
    [17] Lou M, Chen P, Chen Z . Experimental investigation on the suppression of vortex-induced vibration of two interfering risers by control rods. Ships and Offshore Structures, 2017,12(8):1117-1126
    [18] Zhu H, Yao J . Numerical evaluation of passive control of VIV by small control rods. Applied Ocean Research, 2015,51:93-116
    [19] Silva-Ortega M, Assi GRS . Suppression of the vortex-induced vibration of a circular cylinder surrounded by eight rotating wake-control cylinders. Journal of Fluids and Structures, 2017,74:401-412
    [20] Song Z, Duan M, Gu J . Numerical investigation on the suppression of VIV for a circular cylinder by three small control rods. Applied Ocean Research, 2017,64:169-183
    [21] 吴皓 . 多根控制杆对细长柔性立管涡激振动抑制作用的实验及数值研究.[博士论文]. 大连:大连理工大学, 2013
    [21] ( Wu Hao . Experimental and numerical studies on the suppression of vortex induced vibration of long flexible riser by multiple control rods. [PhD Thesis]. Da Lian: Dalian University of Technology, 2013 (in Chinese))
    [22] 宋吉宁, 吕林, 张建侨 等. 三根附属控制杆对海洋立管涡激振动抑制作用实验研究. 海洋工程, 2009,27(3):23-29
    [22] ( Song Jining, Lü Lin, Zhang Jianqiao , et al. Experimental investigation of suppression of vortex-induced vibration of marine risers by three control rods. The Ocean Engineering, 2009,27(3):23-29 (in Chinese))
    [23] 娄敏, 朱岩 . 三控制杆对串联立管涡激振动抑制的试验分析. 船海工程, 2018,47(1):124-128
    [23] ( Lou Min, Zhu Yan . Experimental study on vortex-induced vibration suppression of tandem risers with three-control-rods. Ship & Ocean Engineering, 2018,47(1):124-128 (in Chinese))
    [24] Ji C, Munjiza A, Williams JJR . A novel iterative direct-forcing immersed boundary method and its finite volume applications. Journal of Computational Physics, 2012,231:1797-1821
    [25] Chen W, Ji C, Xu W , et al. Response and wake patterns of two side-by-side elastically supported circular cylinders in uniform laminar cross-flow. Journal of Fluids and Structures, 2015,55:218-236
    [26] Bourguet R, Jacono DL . Flow-induced vibrations of a rotating cylinder. Journal of Fluid Mechanics, 2014,740:342-380
    [27] Shiels D, Leonard A, Roshko A . Flow-induced vibration of a circular cylinder at limiting structural parameters. Journal of Fluids and Structures, 2001,15:3-21
    [28] Chen W, Ji C, Wang R , et al. Flow-induced vibrations of two side-by-side circular cylinders: Asymmetric vibration, symmetry hysteresis and near-wake patterns. Ocean Engineering, 2015,110:244-257
    [29] Chen W, Ji C, Williams J , et al. Vortex-induced vibrations of three tandem cylinders in laminar cross-flow: vibration response and galloping mechanism. Journal of Fluids and Structures, 2018,78:215-238
    [30] 陈威霖, 及春宁, 许栋 . 低雷诺数下串列三圆柱涡激振动中的弛振现象及其影响因素. 力学学报, 2018,50(4):766-775
    [30] ( Chen Weilin, Ji Chunning, Xu Dong . Galloping in vortex-induced vibration of three tandem cylinders at low Reynolds numbers and its influencing factors. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(4):766-775 (in Chinese))
    [31] 及春宁, 花阳, 许栋 等. 不同剪切率来流作用下柔性圆柱涡激振动数值模拟. 力学学报, 2018,50(1):21-31
    [31] ( Ji Chunning, Hua Yang, Xu Dong , et al. Numerical simulation of vortex-induced vibration of a flexible cylinder exposed to shear flow at different shear rates. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(1):21-31 (in Chinese))
    [32] 陈威霖, 及春宁, 徐万海 . 并列双圆柱流致振动的不对称振动和对称性迟滞研究. 力学学报, 2015,47(5):731-739
    [32] ( Chen Weilin, Ji Chunning, Xu Wanhai . Numerical investigation on the asymmetric vibration and symmetry hysteresis of flow-induced vibration of two side-by-side cylinders. Chinese Journal of Theoretical and Applied Mechanics, 2015,47(5):731-739 (in Chinese))
    [33] Qin B, Alam MM, Zhou Y . Two tandem cylinders of different diameters in cross-flow: Flow-induced vibration. Journal of Fluid Mechanics, 2017,829:621-658
    [34] Williamson CHK, Roshko A . Vortex formation in the wake of an oscillating cylinder. Journal of Fluids and Structures, 1988,2:355-381
    [35] Paidoussis MP, Price SJ , et al. Fluid-Structure Interactions: Cross-Flow-Induced Instabilities. Cambridge University Press. 2010
    [36] Navrose N, Mittal S . Lock-in in vortex-induced vibration. Journal of Fluid Mechanics, 2016,794:565-594
  • 期刊类型引用(3)

    1. 李秦超,姚成宝,程帅,张德志,刘文祥. 神经网络状态方程在强爆炸冲击波数值模拟中的应用. 爆炸与冲击. 2023(04): 102-112 . 百度学术
    2. 吴宗铎,满庆洋,严谨,庞建华,孙一方. 三介质Mie-Grüneisen混合模型在水下爆炸防护层问题中的应用. 计算物理. 2023(05): 556-569 . 百度学术
    3. 周蕊,李理,田保林. 爆轰驱动多介质问题的Lagrange多分区自适应数值模拟研究. 力学学报. 2023(11): 2675-2692 . 本站查看

    其他类型引用(0)

计量
  • 文章访问数:  1286
  • HTML全文浏览量:  192
  • PDF下载量:  247
  • 被引次数: 3
出版历程
  • 收稿日期:  2018-09-26
  • 刊出日期:  2019-03-17

目录

    /

    返回文章
    返回