EI、Scopus 收录
中文核心期刊

半潜式海上浮式风机气动阻尼特性研究

陈嘉豪, 胡志强

陈嘉豪, 胡志强. 半潜式海上浮式风机气动阻尼特性研究[J]. 力学学报, 2019, 51(4): 1255-1265. DOI: 10.6052/0459-1879-18-148
引用本文: 陈嘉豪, 胡志强. 半潜式海上浮式风机气动阻尼特性研究[J]. 力学学报, 2019, 51(4): 1255-1265. DOI: 10.6052/0459-1879-18-148
Chen Jiahao, Hu Zhiqiang. STUDY ON AERODYNAMIC DAMPING OF SEMI-SUBMERSIBLE FLOATING WIND TURBINES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1255-1265. DOI: 10.6052/0459-1879-18-148
Citation: Chen Jiahao, Hu Zhiqiang. STUDY ON AERODYNAMIC DAMPING OF SEMI-SUBMERSIBLE FLOATING WIND TURBINES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1255-1265. DOI: 10.6052/0459-1879-18-148
陈嘉豪, 胡志强. 半潜式海上浮式风机气动阻尼特性研究[J]. 力学学报, 2019, 51(4): 1255-1265. CSTR: 32045.14.0459-1879-18-148
引用本文: 陈嘉豪, 胡志强. 半潜式海上浮式风机气动阻尼特性研究[J]. 力学学报, 2019, 51(4): 1255-1265. CSTR: 32045.14.0459-1879-18-148
Chen Jiahao, Hu Zhiqiang. STUDY ON AERODYNAMIC DAMPING OF SEMI-SUBMERSIBLE FLOATING WIND TURBINES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1255-1265. CSTR: 32045.14.0459-1879-18-148
Citation: Chen Jiahao, Hu Zhiqiang. STUDY ON AERODYNAMIC DAMPING OF SEMI-SUBMERSIBLE FLOATING WIND TURBINES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1255-1265. CSTR: 32045.14.0459-1879-18-148

半潜式海上浮式风机气动阻尼特性研究

基金项目: 1) 工信部深水半潜式支持平台研发专项([2016]546); 中国能源建设集团广东省电力设计研究院有限公司科技项目(EV05031W)资助.
详细信息
    通讯作者:

    2) 陈嘉豪,博士后,主要研究方向:海上浮式风机耦合动力学. E-mail: lirainschen@163.com

  • 中图分类号: TK83

STUDY ON AERODYNAMIC DAMPING OF SEMI-SUBMERSIBLE FLOATING WIND TURBINES

  • 摘要: 由于海上漂浮式风机具有较大的支撑平台运动,气动阻尼效应对海上漂浮式风机的运动响应带来了重要的影响, 日渐受到相关国内外学者的关注. 为了研究海上浮式风机的气动阻尼特性,本文推导了海上浮式风机气动阻尼力的数学模型,并借助模型实验和数值计算的方法,研究了半潜式海上浮式风机的气动阻尼特性及其作用规律. 结果表明,浮式风机的风轮旋转时的气动阻尼比风轮非旋转状态时更加明显;在作业工况下,气动阻尼对半潜式浮式风机平台的纵荡、纵摇、机舱的运动有明显的抑制作用,且主要体现为对半潜式浮式风机的平台运动固有频率响应的抑制作用,对波频范围的平台运动作用甚微. 其变化规律与风速大小、波浪载荷等有关,在风机的额定工况之前,气动阻尼通常与风速呈正相关关系,但是增长率有逐渐减小的趋势;在控制系统作用下,当入流风速接近或超过风机额定风速时,容易出现气动负阻尼现象,反而进一步强化浮式风机的运动响应,此时通过降低变桨距控制器的比例系数,即降低变桨距控制器的灵敏度,有助于增加海上浮式风机的气动阻尼效果,并且在一定程度上减缓负的气动阻尼的发生,改善海上浮式风机的运动响应.
    Abstract: Aerodynamic damping effect has an impact on dynamic responses of an offshore floating wind turbine induced by the greater platform motion of an offshore floating wind turbine, which has attracted increasing attention by Chinese and foreign scholars recently. In order to investigate aerodynamic damping effects on an offshore floating wind turbine, a mathematical model of the aerodynamic damping of offshore floating wind turbines is deduced, and then the study on the characteristics of the aerodynamic damping effect of offshore floating wind turbines and the law of the aerodynamic damping effect of offshore floating wind turbines are conducted using model experimental results and simulation results in the paper. The results show that the aerodynamic damping effect of a semi-submersible offshore floating wind turbine in operation condition is greater than that in parked condition. Aerodynamic damping effect restrains the platform surge motion, the platform pitch motion and the nacelle motion of a semi-submersible offshore floating wind turbine in the operation condition. In frequency-domain, aerodynamic damping effect has an impact on motion at its inherent frequency but has little effect on the motion in wave-energy frequency range relating to the wind speed and wave state. The aerodynamic effect of offshore floating wind turbines is in positive correlation with the wind speed, but the gradient of aerodynamic damping effect of a semi-submersible offshore floating wind turbine gradually decreases with the wind speed below the rated wind speed. When the wind speed reach or exceed the rated wind speed, there could be negative damping effect on an offshore floating wind turbine with a blade-pitch-controller. It is found that decreasing proportionality coefficient of the blade-pitch-controller can reduce the sensitivity of the blade-pitch-controller so as to mitigate the negative aerodynamic damping of a semi-submersible offshore floating wind turbine and improve the motion performances of a semi-submersible offshore floating wind turbine to some extent.
  • Heronemus WE.Pollution-free energy from the offshore winds//The 8th Annual Conference and Exposition, Marine Technology Society, Washington DC, 11-130 September, 1972
    李晔, 王本龙, 詹世革. ``2018流固耦合力学在船舶与海洋新能源中的应用研究领域科学家论坛''学术综述. 力学学报, 2019, 51(1): 292-297
    (Li Ye, Wang Benlong, Zhan Shige.Review of the 2018 symposium on application of fluid-structure interaction in naval architecture and offshore renewable energy. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 292-297 (in Chinese))
    Lu X, McElroy MB, Peng W, et al. Challenges faced by China compared with the US in developing wind power. Nature Energy, 2016, 1(6): 16061
    Zhang X, Ma C, Song X, et al.The impacts of wind technology advancement on future global energy. Applied Energy, 2016, 184: 1033-1037
    Butterfield S, Musial W, Jonkman J, et al.Engineering challenges for floating offshore wind turbines. Copenhagen Offshore Wind Conference, Copenhagen, Denmark, 2005
    Robertson AN, Jonkman JM.Loads analysis of several offshore floating wind turbine concepts//The Twenty-first International Offshore and Polar Engineering Conference, International Society of Offshore and Polar Engineers, Maui, Hawaii, USA, 19-24 June, 2011
    Jonkman JM, Denis M.Dynamics of offshore floating wind turbines--analysis of three concepts. Wind Energy, 2011, 14(4): 557-569
    李国强,张卫国,陈立等. 风力机叶片翼型动态试验技术研究.力学学报, 2018, 50(4): 751-765
    (Li Guoqiang, Zhang Weiguo, Chen Li, et al.Research on dynamic test technology for wind turbine blade airfoil. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 751-765 (in Chinese))
    Koo BJ, Goupee AJ, Kimball RW, et al.Model tests for a floating wind turbine on three different floaters. Journal of Offshore Mechanics and Arctic Engineering, 136(2): 020907
    Duan F, Hu ZQ, Niedzwecki JM.Model test investigation of a spar floating wind turbine. Marine Structures, 2016, 49: 76-96
    刘利琴, 郭颖, 赵海祥等. 浮式垂直轴风机的动力学建模、仿真与实验研究, 力学学报, 2017, 49(2): 299-307
    (Liu Liqin, Guo Ying, Zhao Haixiang, et al.Dynamic modeling, simulation and model tests research on the floating VAWT. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 299-307 (in Chinese))
    Skaare B, Hanson TD, Yttervik R, et al.Dynamic response and control of the Hywind demo floating wind turbine. The European Wind Energy Conference and Exhibition, Warsaw, Poland, 14-17 March, 2011
    Aubault A, Cermelli C, Lahijanian A, et al.WindFloat contraption: from conception to reproduction//The ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering: volume 4 - offshore geotechnics, Ronald W. Yeung Honoring Symposium on Offshore and Ship Hydrodynamics, Rio de Janeiro, Brazil, 1-6 July 2012: 847-853
    Fukushima Offshore Wind Consortium. Fukushima Floating Offshore Wind Farm Demonstration Project (Fukushima FORWARD). Japan: Fukushima Offshore Wind Consortium, Fukuoka, 2014: 1-8
    Viselli AM, Goupee AJ, Dagher HJ, et al. VolturnUS 1:8: conclusion of 18-months of operation of the first grid-connected floating wind turbine prototype in the Americas. Proceedings of the ASME, 2015, 34th International Conference on Ocean, Offshore and Arctic Engineering, New York: ASME, St. John's, NL, Canada, 31 May-5 June, 2015: pp.V009T09A055.
    Butterfield S, Musial W, Jonkman J, et al.Engineering challenges for floating offshore wind turbines. No. NREL/CP-500-38776. National Renewable Energy Laboratory (NREL), Golden, CO., 2007
    Wayman EN, Sclavounos PD, Butterfield S, et al.Coupled Dynamic Modeling of Floating Wind Turbine Systems: Preprint (No. NREL/CP-500-39481). National Renewable Energy Lab. (NREL), Golden, CO, United States, 2006
    Musial W, Butterfield S, Boone A.Feasibility of floating platform systems for wind turbines//42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno Nevada, 5-8 January, 2004: 1007
    Sclavounos P.Floating offshore wind turbines. Marine Technology Society Journal, 2008, 42(2): 39-43
    Karimirad M, Moan T.Effect of aerodynamic and hydrodynamic damping on dynamic response of spar type floating wind turbine//European Wind Energy Conference, Poland, Warsaw, 2010
    Larsen TJ, Hanson TD.A method to avoid negative damped low frequent tower vibrations for a floating, pitch controlled wind turbine. Journal of Physics: Conference Series, 2007, 75(1): 012073
    Jonkman J.Influence of control on the pitch damping of a floating wind turbine. 46th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, 7-10 January, 2008
    Cheng Z, Madsen HA, Gao Z, et al.Numerical study on aerodynamic damping of floating vertical axis wind turbines. Journal of Physics: Conference Series, 2016, 753(10): 102001
    陈严, 王小虎, 刘雄等. 水平轴风力机叶片稳态失速气动阻尼分析. 太阳能学报, 2011, 32(9): 1294-1302
    (Chen Yan, Wang Xiaohu, Liu Xiong, et al.Aerodynamic damping analysis of horizontal axis wind turbine blade in steady stall. Acta Energiae Solaris Sinica, 2011, 32(9): 1294-1302 (in Chinese))
    刘雄, 马新稳, 沈世等. 风力机柔性叶片振动变形对其气动阻尼的影响分析. 空气动力学学报, 2013, 31(3): 407-412
    (Liu Xiong, Ma Xinweng, Shen Shi, et al.Analysis of the influence of vibration and deformation of the blade on the aerodynamic damping. Acta Aerodynamic Sinica, 2013, 31(3): 407-412 (in Chinese))
    邓露, 黄民希, 肖志颖等. 考虑气动阻尼的浮式风机频域响应分析. 湖南大学学报: 自然科学版, 2017, 44(1): 1-8
    (Deng Lu, Huang Mingxi, Xiao Zhiying, et al.Analysis on frequency response of floating wind turbine considering the influence of aerodynamic damping. Journal of Hunan University (Natural Sciences), 2017, 44(1): 1-8 (in Chinese))
    Airfoil Tools: http://airfoiltools.com/airfoil/details?airfoil=naca4412-il
    Chen JH, Hu ZQ.Experimental investigation of aerodynamic effect-induced dynamic characteristics of an OC4 semi-submersible floating wind turbine. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2018, 232(1): 19-36
    Chen JH, Hu ZQ, Wan DC, et al.Comparisons of the dynamical characteristics of a semi-submersible floating offshore wind turbine based on two different blade concepts. Ocean Engineering, 2018, 153: 305-318
    Duan F, Hu ZQ, Wang J.Model tests of a spar-type floating wind turbine under wind/wave loads//ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, St. John's, NL, Canada, 31 May-5 June, 2015
    Chen JH, Hu ZQ, Liu GL, et al.Coupled aero-hydro-servo-elastic methods for floating wind turbines. Renewable Energy, 2019, 130: 139-153
    Hu ZQ, Chen JH, Liu GL.Investigation on high-order coupled rigid-flexible multi-body dynamic code for offshore floating wind turbines. Proceeding of ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, Trondheim, Norway, 25-30 June, 2017
    Jonkman JM.Dynamics modeling and loads analysis of an offshore floating wind turbine. [PhD Thesis]. Boulder: University of Colorado Boulder, 2007
    Jonkman JM, Butterfield S, Musial W, et al.Definition of a 5-MW reference wind turbine for offshore system development. National Renewable Energy Lab (NREL), Golden, CO(United States), 2009
  • 期刊类型引用(12)

    1. 周乐,马璐,秦明,张险峰,沈昕,杜朝辉. 浮式风力机纵荡过程气动稳定性分析. 太阳能学报. 2025(01): 60-70 . 百度学术
    2. 陈俊岭,高洁,冯又全,丛欧. 风电机组纯钢塔架和组合式塔架动力特性对比研究. 太阳能学报. 2024(01): 334-341 . 百度学术
    3. 杨礼东,姜玉挺,李昊,李焱,刘利琴. 不同动力学建模方法对浮式风机系统动力响应的影响研究. 舰船科学技术. 2023(12): 73-81 . 百度学术
    4. 赵仕伦,陈鹏飞,程永权. 上漂浮式风机气动阻尼效应全耦合数值分析. 中国海上油气. 2023(06): 144-154 . 百度学术
    5. 邹晓阳,潘卫国. 海上浮式风机动力学仿真分析研究进展. 发电技术. 2022(02): 249-259 . 百度学术
    6. 王新宝,李庆安,蔡畅,王泽坤,王腾渊,陈晔雯,杨英健. 浮体平台运动对浮式风电机组气动特性影响风洞试验. 空气动力学学报. 2022(04): 240-246 . 百度学术
    7. 张彬,赵新颖,尚勇志,薛海波,刘晓雷. 海底地形对浅水半潜式漂浮风机悬链式系泊系统的影响研究. 中国造船. 2022(05): 146-156 . 百度学术
    8. 冷述栋,常新江,董晔弘,倪远翔,唐友刚,李焱. 基于气动-水动-结构耦合模型的半潜风机动力响应分析. 中国海洋平台. 2022(06): 1-8+27 . 百度学术
    9. 杨冬宝,高俊松,刘建平,宋础,季顺迎. 基于DEM-FEM耦合方法的海上风机结构冰激振动分析. 力学学报. 2021(03): 682-692 . 本站查看
    10. 施伟,薛瑞宁,侯晓彬,修昊,张礼贤. 10 MW级半潜漂浮式风机的动力响应. 船舶工程. 2021(10): 1-9+43 . 百度学术
    11. 陈肖龙,刘航,李卓晖,张宝星,潘岐深,张荣鑫. 气象模拟仿真技术在电力安全应急培训中的应用与研究. 电力大数据. 2020(01): 78-83 . 百度学术
    12. 周斌珍,胡俭俭,谢彬,丁波寅,夏英凯,郑小波,林志良,李晔. 风浪联合发电系统水动力学研究进展. 力学学报. 2019(06): 1641-1649 . 本站查看

    其他类型引用(11)

计量
  • 文章访问数:  1867
  • HTML全文浏览量:  423
  • PDF下载量:  293
  • 被引次数: 23
出版历程
  • 收稿日期:  2018-04-30
  • 刊出日期:  2019-07-17

目录

    /

    返回文章
    返回